Physical and economic analysis of energy transition scenarios* Methodology & first results

<u>Sandra Bouneau</u>, Laurent Audouin, Xavier Doligez, Marc Ernoult, Lise Eychène, Abdoul-Aziz Zakari-Issoufou Institut de Physique Nucléaire d'Orsay – Université Paris Sud / IN2P3 – CNRS

Gaël Giraud Centre d'économie de la Sorbonne – INSHS / CNRS

Anthony Dufour, Marie-Noëlle Pons, Jean-François Portha Laboratoire Réactions & Génie des Procédés – Université de Lorraine / INSIS – CNRS

* financial support APESE Project 2015-2017 / mission for interdisciplinarity - CNRS

Les Houches 2018

Context & objectives

Initial motivations

- Evaluate the impact of an energy transition scenario on the economy
- Elaborate a methodology and a tool able to
 - assess different scenarios within a physical approach based on a modeling of the energy production sector
 - integrate the energy sector in a complete modeling of the economic production sector to analyse their interactions

First phase

- Common framework, economic and physical, to build a global innovative model using the same quantities to describe two production sectors, economy and energy, deeply different but strongly correlated
- Start first by a physical analysis of an energy transition scenario to study its correlations with economy (and not the opposite)

Model basis

 Dynamic multisector economic model coupled to an « input/output » Leontief formalism

- Q₁: gross capital production used by the n sectors that produce commodities to
 - \checkmark compensate the capital damages (Q₁₁)
 - construct new installations to increase the commodities production (I)
- Q_i: gross commodities production consumed by
 ✓ the n sectors for their production (Q_{ii≠1})
 - \checkmark the sector 1 for the capital production (Q_{1i\neq1})
 - ✓ household (C)
- I: total investiment distributed among the n sectors according their profits and requires to
 - ✓ compensate the capital depreciation and damages (δK_i)
 - \checkmark increase the capital $(\dot{K_i})$

$$\begin{cases} I = \sum_{i=1}^{n} I_i \\ I_i = \dot{K}_i + \delta K_i \end{cases}$$

Model basis

- Main economic quantities to describe the dynamic of the production sector
 - Gross production of each sector i: $Q_i = \frac{K_i}{v_i}$
 - *K_i*: capital
 - v_i: capital productivity
 - Installations run at full capacity
 - Total investment: $I(t) = \sum_{i} (\dot{K}_{i} + \delta K_{i}) = Q_{1}(t) = \frac{K_{1}}{\nu_{1}}$
 - δK_i : capital depreciation including damages
 - Net total production: $GDP = Y_1 + \sum_{i=2}^n Y_i = I + C$
 - $Y_1 = I$: total net capital equal to total investment
 - $\sum_{i=2}^{n} Y_i = \sum_{i=2}^{n} (Q_i Q_{ji}) = C$: total net production of commodities and consumed by household sector

Energy sector description

5

- Energy sector considered as an economic production sector but treated in a first step separatly
- w physical » analysis of scenarios independently of economic model and
 hypothesis
- Energy sector described as a set of technologies

« source - energy carrier - energy end-use »

Energy sector modeling

6

Translate economic quantities such as capital, investment, gross and net production in energy units to describe the transition of a given scenario

Economy	Energy
n sectors of commodities production	technologies called by scenarios to operate the energy transition fossil fuels → electricity biomass → fuel for transport solar → low-temperature heat
Capital K	energy facilities (K _E) running at full capacity to produce the gross total final energy (E) $E = \frac{K_E}{\nu_E}$ with $\frac{1}{\nu_E}$: energy produced / capital unit
Investment I	energy required (I _E) to construct new energy facilities (\dot{K}_E) to increase the gross energy production and/or to replace the old ones (δK_E) $I_E = \dot{K}_E + \delta K_E$
Net prod. Y	net energy ($\rm Y_{\rm E}$) produced by the capital $\rm K_{\rm E}$ once the energy consumed for the energy production itself deducted

Energy sector modeling / Energy transition scenario analysis

 Energy sector modeling inspired by the economic model

Energy sector modeling / Energy transition scenario analysis

Energy sector modeling / Energy transition scenario analysis

- Identify the main technologies (source carrier use » called by the scenarios
- Quantify the « embodied » energy in terms of
 - Energy consumed for the facilities construction (E_{i1}^K)
 - Energy consumed by the facilities when they produce continuously energy from the source to the consumer (E_{ji}^{op})
- Distinction between the energy self-consumed for the capital and for the operation
- For a given source, the embodied energy is different according the energy carrier that it produces
- Analysis based on the energy carriers in terms of quantities produced by the technologies and embodied energies consumed by these technologies themselves

Energy sector modeling / « Embodied » energy

10

- Methodology inspired from « Life Cycle Analysis » to take into account all the operations from « cradle to gate »
- Energy investment for each technology = energy consumed to synthesize the main materials used for the construction of the facilities and all their equipment

	concrete		steel		copper		aluminium	
	electricity	HT-Q	electricity	HT-Q	electricity	HT-Q	electricity	HT-Q
GJ/ton	0,2	1	1,4	11	30	10	50	5

Embodied energy for nuclear electricity: investment

Energy sector modeling / « Embodied » energy

11

Energy self-consumed for the facilities operation

Embodied energy for nuclear electricity generation : operation

- Values about operation and investment come from multiple information sources (data base, private communications with experts, reports, ...)
- huge lack of information and important discrepancies between values when they exist, hypotheses non explained,...

Energy sector modeling / « Embodied » energy

- 12
- from the analysis of different scenarios 31 technologies « source carrier » involved in the energy transition

photovoltaïc

Life time (years)

« Embodied » energy / investment vs operation

13

« Embodied » energy / investment vs operation

« Embodied » energy / investment vs operation

All energy investment values are consistent between technologies but very underestimated compared to values found in literature

- What is not taken into account
 - storage for intermittent sources
 - CCS technology
 - installation dismantling & waste treatment
 - investment for end-use energy consumption
 - transport of the final energy carrier to the user

→ For more realistic values: $E_{consumed}^{K_i} \times 3 \rightarrow \times 5$ (?)

16

- □ Gross final energy and carrier generation kept constant from $2015 \rightarrow 2050$
 - 1/3 electricity 1/3 heat 1/3 fuel for transport
 - In 2015: fossils = 93 % of total gross final energy
 - during the transition
 - fossil and nuclear electricity > 0 replaced by 50% PV and 50% wind
 - fossil heat & oil for transport kept constant
 - In 2050: fossils = 67 % of total gross final energy

17

 During the transition, gross energy « source - carrier » generation is supposed to vary linearly

18

Energy investment / « wind – electricity » & « PV – electricity »

• Construction of new installations = \dot{K}_{wind} and $\dot{K}_{PV} > 0$

= Energy consumed for the construction = $E_{consumed}^{K_{wind}} \dot{K}_{wind}$ and $E_{consumed}^{K_{PV}} \dot{K}_{PV}$

Energy investment / « wind – electricity » & « PV – electricity »

As soon as the installations are built

energy is « capitalized » each year to replace them at the end of their life

capital is depreciated

19

- Energy consumed to renew the installations = $\delta_{wind}K_{wind}$ and $\delta_{PV}K_{PV}$

with
$$\delta_{wind,PV} K_{wind,PV} = \frac{E_{consumed}^{K_{wind,PV}}}{LT_{wind,PV}} K_{wind,PV}$$

20

Energetic investment / « fossil – electricity » and « nuclear – electricity »

Decrease of fossil and nuclear installations dedicated to electricity generation

Before energy transition: installations are just renewed to maintain the production at the maximum

Mecanisms of the modeling / simplified energy transition scenario

- Embodied energy for operation / « source carrier »
 - wind and PV: energy consumed for operation = 0

21

 nuclear & fossils: energy consumed for operation decreases gradually as installations stop producing

- The net fuel FT production increases as it is less consumed by the new energy mix for its capital & operation
- Electricity and heat are the most important carriers consumed as embodied energy during the transition and for the new energy mix

➡ energy finally available in the form of fuel, heat and electricity (net carrier production) for household and non energetic industry is different from the initial distribution

□ Gross & net total production / investment & operation

Before the transition

23

- ✓ total net final energy ~ 81% of the gross final energy
- ✓ energy to renew the capital < 1% of the gross final energy
- ✓ energy for operation ~ 18% of the gross final energy

After the transition

- ✓ total net final energy ~ 81% of the gross final energy
- ✓ energy to renew the capital ~ 8% of the gross final energy
- ✓ energy for operation ~ 11% of the gross final energy

- 24
- 2 scenarios analyzed: BLUEMAP-IEA & ECOFYS-WWF with the same objective to reduce CO₂ emissions
 - 2 different energy source mix
 - 2 different gross energy carrier productions

ECOFYS – WWF scenario

- \checkmark No more fossil and nuclear electricity
- ✓ Strong bio-energy and renewable electricity deployments
- ✓ Much more less HT-heat than today

25

ECOFYS – WWF scenario

- ✓ No more fossil for LT-heat and fuel for transport
- \checkmark Much more less LT-heat and fuel for transport than today
- Total gross energy production
 - Today ~ 82 000 TWh/year
 - BLUEMAP 2050 ~ 106 000 TWh/year (+ 29%)
 - ECOFYS 2050 ~ 72 000 TWh/year (- 12%)

26

- First step: total final energy kept <u>constant</u> for both scenarios at the same value as today
- Difference between gross and net energy productions depend on the energy mix only

27

- First step: total final energy kept <u>constant</u> for both scenarios at the same value as today
- Difference between gross and net energy productions depend on the energy mix only
 - sentivity to different energy mix with investment values x3

28

 Results for ECOFYS-scenario: gross & net total production / energy carrier (with minimum investment x3)

- Electricity and HT heat are the most important energy carriers consumed during the transition (initial hypothesis/energy investment)
- ➡ gross and net electricity follow the same trend
- ➡ HT heat is strongly consumed during the transition and after the transition the net production remains very low

29

Results for ECOFYS-scenario: gross & net total production / energy carrier

 \checkmark LT – heat as embodied energy is very low

 \checkmark Fuel-FT as embodied energy is less consumed by the new energy mix

30

 Results for BLUEMAP-scenario: gross & net total production / carrier (with minimum investment x3)

31

 \Box Comparison of both scenarios (with minimum investment x3)

Perspectives & conclusion 1: Energy part

32

- Embodied energy is a key point to analyse transition energy scenario
- Huge lack of data on energy intensity of construction materials, on global energy consumed for investment and operation, specially for new technologies
- Build a network of experts to
 - validate the values for all the technologies
 - complete the analysis of embodied energy by including
 - storage of electricity and heat
 - energy grids
 - CCS technologies
 - Installations used by consumers
 - evaluate the realistic uncertainties to make sensitivity calculations
- Necessity to analyze the energy mix and the corresponding embodied energy in the form of the different energy carriers
- Compare different options
 - to store the energy investment to renew facilities
 - on the time of the transition
 - on the life time of facilities
 - ••••

Perspectives & conclusion 2: Coupling with economic model

Model basis

- Economic quantities to describe the dynamic of the production sector
 - Gross production of each sector i: $Q_i = \frac{K_i}{v_i}$
 - K_i: capital
 - v_i: capital productivity
 - Installations run at full capacity
 - Net profit of each sector: $\Pi_i = Q_i (Q_{ji} + w_i L_i + rD_i)$
 - $w_i L_i$: cost labor with the wage function $\frac{\dot{w}}{w} = \phi(\lambda)$ where $\lambda = \frac{L}{N}$ the employment rate

D_i: debt with
$$\dot{D}_i = I_i - \Pi_i$$

Investment insured by profits generated by each sector and its bank loan

- Total investment: $I(t) = \sum_{i} \alpha_{i} I = \sum_{i} (\dot{K}_{i} + \delta' K_{i}) = Q_{1}(t) = \frac{K_{1}}{v_{1}}$
 - α_i : distribution function of I among n sectors with $\dot{\alpha}_i = f(r_i)$
 - r_i : capital yield avec $r_i = \frac{\Pi_i}{K_i}$
 - $\delta' K_i$: capital depreciation including damages
- Net total production: $GDP = \sum_{i=1}^{n} Y_i = Y_1 + \sum_{i=2}^{n} Y_i$
 - $Y_1 = I$: net capital production

• $Y_i = Q_i - Q_{ii} = C$: net production of commodities for household sector

System of non-linear coupled differential equations ...

Mecanisms of the modeling / simplified energy transition scenario

36

Gross & net total production/ « source – carrier »

The starting of PV and wind deployment is suported by fossils and nuclear

As wind and PV electricity generation increases, it contributes more and more to their own deployment

- ightarrow net wind and PV electricity \searrow
- ➡ net fossil energy relatively to the gross fossil energy