

CENTRE INTERNATIONAL DE RECHERCHE SUR L'ENVIRONNEMENT ET LE DÉVELOPPEMENT

The energy of IPCC...or the IPCC of energy

Celine Guivarch

guivarch@centre-cired.fr

Science and Energy, 2018 Ecole de Physique des Houches 5 march 2018

What is the IPCC?

http://ipcc.ch/

- The Intergovernmental Panel on Climate Change
- The United Nations body for assessing the science related to climate change
- Established by the United Nations Environment Programme and the World Meteorological Organization in 1988
- 195 member states
- 3 working groups:
 - WGI: the physical science basis of climate change;
 - WGII: impacts, adaptation and vulnerability;
 - WG III: mitigation of climate change.
- "hybrid" scientific and intergovernmental nature
- "policy relevant, not policy prescriptive"

What does the IPCC do?

- provides policymakers with regular scientific assessments concerning climate change, its implications and risks, as well as adaptation and mitigation strategies.
- **reviews and assesses** the most recent scientific, technical and socioeconomic information produced worldwide relevant to the understanding of climate change. It does not conduct any research nor does it monitor climate related data or parameters.
- identifies where there is agreement in the scientific community, where there are differences of opinion, and where further research is needed.
- mobilizes hundreds of scientists to produce its reports (but only a dozen permanent staff work in the IPCC's Secretariat).

The process from

scoping to

publication of

the report takes

roughly 5 years.

Factsheet from AR5 WGIII report

The Report

1 Scoping Meeting - 1 Summary for Policymakers - 16 Chapters - More than 1400 nominations from 85 countries - 235 Coordinating Lead Authors and Lead Authors and 38 Review Editors from 58 countries¹ - 176 Contributing Authors from 35 countries² - Close to 1200 scenarios of socioeconomic development analyzed - Close to 10,000 references to literature

Total Reviews

• 38,315 comments • 836 Expert Reviewers from 66 countries • 37 Governments

The WGIII Approval Session

 7-11 April 2014, Berlin, Germany - The Summary for Policymakers was approved line-by-line and accepted by the Panel, which has **195** member Governments

From Jones (2013). 25 years of IPCC. Nature 501.

Where is energy in IPCC reports?...

... everywhere!

Greenhouse Gas Emissions by Economic Sectors

FAR (1990) – Response Strategies working group report

Ι	Роі	LICYMAKERS SUMMARY	xix		
II	IPC	CC Response Strategies Working Group Reports	1		
	1	Introduction	5		
	2	Emissions Scenarios	9		
	Sub	ogroup Reports			
	3	Energy and Industry	45		
	4	Agriculture, Forestry, and Other Human Activities	73		
	5	Coastal Zone Management	129		
	6	Resource Use and Management	161		
	Imj	plementation Measures			
	7	Public Education and Information	209		
	8	8 Technology Development and Transfer			
	9	Economic (Market) Measures	229		
	10	Financial Mechanisms	245		
	11	Legal and Institutional Mechanisms	257		

SAR (1995): Economic and social dimensions of climate change

Sun	mary for Policymakers	1
1	Introduction: Scope of the Assessment	17
2	Decision-Making Frameworks for Addressing Climate Change	53
3	Equity and Social Considerations	79
4	Intertemporal Equity, Discounting, and Economic Efficiency	125
5	Applicability of Techniques of Cost-Benefit Analysis to Climate Change	145
6	The Social Costs of Climate Change: Greenhouse Damage and the Benefits of Control	179
7	A Generic Assessment of Response Options	225
8	Estimating the Costs of Mitigating Greenhouse Gases	263
9	A Review of Mitigation Cost Studies	297
10	Integrated Assessment of Climate Change: An Overview and Comparison of Approaches and Results	367
11	An Economic Assessment of Policy Instruments for Combatting Climate Change	397

SAR, ch7: A generic assessment of response options

Summa	ry	229	7.4.6 E
7.1 Intr	oduction	232	7.4.7 N
7.2 A C	onceptual Framework	232	7.5 Adapta
7.2.1	1 Mitigation options	233	7.5.1 A
7.2.2	2 Adaptation options	233	7.5.2 H
7.2.3	3 Indirect policy options	234	7.5.3 A
			CC
7.3 Crit	eria for Assessment	234	7.5.4 M
7.4 Miti	gation Options	236	7.6 An Inte
7.4.1	Energy conservation and efficiency		77 Regions
	improvement	236	Cooperation
7.4.2	Prossil fuel switching	240	cooperation
7.4.3	Renewable energy technologies	241	Endnotes
7.4.4	Nuclear energy	242	
7.4.5	Capture and disposal	245	References

9	7.4.6 Enhancing sinks: Forestry options	245
	7.4.6.1 Costs	247
2	7.4.7 Methane	249
2	7.5 Adaptation Options	24 9
3	7.5.1 Adaptation to what?	250
3	7.5.2 How to adapt	251
4	7.5.3 Adaptation measures in developing	
	countries	252
1	7.5.4 Modelling adaptation	252
5	7.6 An Integrating Approach	253
~	7.7 Regional Differences and International	
))	Cooperation	254
)	Endnotes	256
-	References	258

SAR, ch8: Estimating the costs of mitigating greenhouse gases

Summary	267	8.3.1.2.3 Land use and human	079
8.1 Introduction	268	settlements 8 3 1 2 4 Development patterns	278
of miloucion	200	in development patterns	278
8.2 Costs: Definitions and Determinants	269	8.3.2 Modelling development paths and	2/0
8.2.1 How is cost measured?	269	mitigation costs	279
8.2.2 Taxonomy of mitigation cost concepts	269	8.3.2.1 Prediction and simulation: The need	
8.2.2.1 Gross costs, net costs, and the		for multiple baselines	279
overall cost-benefit balance		8.3.2.2 Economic modelling and development	
of mitigation strategies	270	trends: Some limits	280
8.2.3 Key factors affecting the magnitude of		8.3.3 Multiple baselines, uncertainty, and	
costs: Costs as a function of baselines		long-term mitigation costs	281
and policy strategies	271	8.3.3.1 Multiple baselines and the	
8.2.3.1 Baselines and magnitude of the		noncomparability of cost assessments	281
"no-regret" potentials	271	8.3.3.2 The meaning of the baseline	282
8.2.3.2 Target setting: Level and timing	273		
8.2.3.3 Policy instruments – the tax		8.4 Differences among Models and their Results	282
recycling issue	273	8.4.1 General methodological considerations	282
8.2.3.4 International dimensions of climate		8.4.2 Critical dimensions of a typology of	
policies	274	existing models	283
		8.4.2.1 Diversity of models, diversity of	
8.3 Patterns of Development and Technological		purposes	283
Change	274	8.4.2.2 The structure of existing models	284
8.3.1 Links between development patterns,		8.4.2.3 The role of key input assumptions	285
technical change, and mitigation costs	274	8.4.3 The top-down versus bottom-up	
8.3.1.1 The importance of the socio-		modelling controversy: Some lessons	
economic assumptions underlying		from the energy field	286
scenarios	274	8.4.4 Beyond energy: Carbon sinks and	
8.3.1.2 Current and future socioeconomic		nonenergy greenhouse gas emissions	289
development patterns	277	8.4.4.1 Carbon sequestration studies	289
8.3.1.2.1 Material and energy content			
of development in	1	Endnotes	292
industrialized countries	277		
8.3.1.2.2 Links among energy,	I	References	293
transport, and urban planning	277		

TAR (2001): Mitigation

1	Scop	e of the	Report	19
	1.1	Backg	round	19
	1.2	Broade	ening the Context of Climate Change	
		Mitiga	tion	19
	1.3	Integra	ating the Various Perspectives	20
2	Gree	nhouse	Gas Emissions Scenarios	21
	2.1	Scenar	108 Geo Freiniens Mitigation	21
	2.2	Greeni	vior	21
	22	Global	Tos	21
	2.5	Spacia	1 Papart on Emissions Scenarios	22
	2.4	Review	w of Post-SRES Mitigation Scenarios	23 24
2	Tech	nologio	al and Faanamia Dotantial of	
5	Mitic	notion C	In and Economic Potential of	26
	3.1	Key D	evelopments in Knowledge about	20
	5.1	Techno	ployical Options to Mitigate GHG	
		Emissi	ions in the Period up to 2010-2020	
		since t	he Second Assessment Report	26
	3.2	Trends	in Energy Use and Associated	
		Greenl	house Gas Emissions	27
	3.3	Sector	al Mitigation Technological Options	28
		3.3.1	The Main Mitigation Options in the	
			Buildings Sector	29
		3.3.2	The Main Mitigation Options in the	
			Transport Sector	38
		3.3.3	The Main Mitigation Options in the	
			Industry Sector	38
		3.3.4	The Main Mitigation Options in the	
			Agricultural Sector	39
		3.3.5	The Main Mitigation Options in the	
			Waste Management Sector	39
		3.3.6	The Main Mitigation Options in the	
		2.2.7	Energy Supply Sector	39
		3.3.7	The Main Mitigation Options for	
			Hydrofluorocarbons and	40
	2.4	Th. T.	Perjuorocarbons	40
	5.4	Dotent	ial of Greenhouse Gas Mitigation:	
		Synthe	ar of Oreenhouse Gas wittgation.	40
		Syntic	515	40
4	Tech	nologica	al and Economic Potential of Options	;
	to Er	nhance,	Maintain, and Manage Biological	
	Carb	on Rese	ervoirs and Geo-engineering	41
	4.1	Mitiga	tion through Terrestrial Ecosystem	
	1.2	and La	and Management	41
	4.2	Social	and Economic Considerations	42
	4.3	Mitiga	tion Options	42

	4.4	Criteria for Biological Carbon Mitigation	
		Options	43
	4.5	Economic Costs	43
	4.6	Marine Ecosystem and Geo-engineering	43
5	Barr	iers, Opportunities, and Market Potential of	
	Tech	nologies and Practices	44
	5.1	Introduction	44
	5.2	Sources of Barriers and Opportunities	44
	5.3	Sector- and Technology-specific Barriers	
		and Opportunities	47
6	Polic	eies, Measures, and Instruments	48
	6.1	Policy Instruments and Possible Criteria	
		for their Assessment	48
	6.2	National Policies, Measures, and	
		Instruments	49
	6.3	International Policies and Measures	50
	6.4	Implementation of National and	
		International Policy Instruments	50
7	Cost	ing Methodologies	51
	7.1	Conceptual Basis	51
	7.2	Analytical Approaches	51
		7.2.1 Co-Benefits and Costs and Ancillary	
		Benefits and Costs	51
		7.2.2 Implementation Costs	52
		7.2.3 Discounting	52
		7.2.4 Adaptation and Mitigation Costs and	
		the Link between Them	52
	7.3	System Boundaries: Project, Sector, and	
		Macro	52
		7.3.1 Baselines	52
		7.3.2 Consideration of No Regrets Option	52
		7.3.3 Flexibility	53
		7.3.4 Development, Equity and	_
		Sustainability Issues	53
	7.4	Special Issues Relating to Developing	
		Countries and EITs	53
	7.5	Modelling Approaches to Cost Assessment	54
8	Glob	al, Regional, and National Costs and	
	Anci	llaryBenefits	54
	8.1	Introduction	54
	8.2	Gross Costs of GHG Abatement in	. .
	0.0	Technology-detailed Models	54
	8.3	Costs of Domestic Policy to Mitigate	
		Carbon Emissions	55
	8.4	Distributional Effects of Carbon Taxes	56

TAR (2001): Mitigation

8.6 Ancillary Benefits of Greenhouse Gas Mitigation 58 8.7 "Spillover" Effects from Actions Taken in Annex B on Non-Annex B Countries 58 8.8 Summary of the Main Results for Kyoto Targets 58 8.9 The Costs of Meeting a Range of Stabilization Targets 61 8.10 The Issue of Induced Technological Change 62 9 Sectoral Costs and Ancillary Benefits of Mitigation 62 9.1 Differences between Costs of Climate Change Mitigation Evaluated Nationally and by Sector 62 9.2 Selected Specific Sectoral Findings on Costs of Climate Change Mitigation 63 9.2.1 Coal 63		8.5	Aspects of International Emission Trading	57
Mitigation 58 8.7 "Spillover" Effects from Actions Taken in Annex B on Non-Annex B Countries 58 8.8 Summary of the Main Results for Kyoto Targets 58 8.9 The Costs of Meeting a Range of Stabilization Targets 60 8.10 The Issue of Induced Technological Change 62 9 Sectoral Costs and Ancillary Benefits of Mitigation 62 9.1 Differences between Costs of Climate Change Mitigation Evaluated Nationally and by Sector 62 9.2 Selected Specific Sectoral Findings on Costs of Climate Change Mitigation 63 9.2.1 Coal 63	ו	8.6	Ancillary Benefits of Greenhouse Gas	
8.7 "Spillover" Effects from Actions Taken in Annex B on Non-Annex B Countries 58 8.8 Summary of the Main Results for Kyoto Targets 60 8.9 The Costs of Meeting a Range of Stabilization Targets 61 8.10 The Issue of Induced Technological Change 62 9 Sectoral Costs and Ancillary Benefits of 	I		Mitigation	58
Annex B on Non-Annex B Countries 58 8.8 Summary of the Main Results for Kyoto 60 Targets 60 8.9 The Costs of Meeting a Range of 61 8.10 The Issue of Induced Technological Change 62 9 Sectoral Costs and Ancillary Benefits of 62 9.1 Differences between Costs of Climate 62 9.1 Differences between Costs of Climate 62 9.2 Selected Specific Sectoral Findings on 62 9.2.1 Coal 63		8.7	"Spillover" Effects from Actions Taken in	
8.8 Summary of the Main Results for Kyoto Targets 60 8.9 The Costs of Meeting a Range of Stabilization Targets 61 8.10 The Issue of Induced Technological Change 62 9 Sectoral Costs and Ancillary Benefits of Mitigation 62 9.1 Differences between Costs of Climate Change Mitigation Evaluated Nationally and by Sector 62 9.2 Selected Specific Sectoral Findings on Costs of Climate Change Mitigation 63 9.2.1 Coal 63			Annex B on Non-Annex B Countries	58
Targets 60 8.9 The Costs of Meeting a Range of Stabilization Targets 61 8.10 The Issue of Induced Technological Change 62 9 Sectoral Costs and Ancillary Benefits of Mitigation 62 9.1 Differences between Costs of Climate Change Mitigation Evaluated Nationally and by Sector 62 9.2 Selected Specific Sectoral Findings on Costs of Climate Change Mitigation 63 9.2.1 Coal 63		8.8	Summary of the Main Results for Kyoto	
8.9 The Costs of Meeting a Range of Stabilization Targets 61 8.10 The Issue of Induced Technological Change 62 9 Sectoral Costs and Ancillary Benefits of Mitigation 62 9.1 Differences between Costs of Climate Change Mitigation Evaluated Nationally and by Sector 62 9.2 Selected Specific Sectoral Findings on Costs of Climate Change Mitigation 63 9.2.1 Coal 63			Targets	60
Stabilization Targets 61 8.10 The Issue of Induced Technological Change 62 9 Sectoral Costs and Ancillary Benefits of 62 9 Sectoral Costs and Ancillary Benefits of 62 9.1 Differences between Costs of Climate 62 9.1 Differences between Costs of Climate 62 9.2 Selected Specific Sectoral Findings on 62 9.2 Selected Specific Sectoral Findings on 63 9.2.1 Coal 63		8.9	The Costs of Meeting a Range of	
8.10 The Issue of Induced Technological Change 62 9 Sectoral Costs and Ancillary Benefits of Mitigation 62 9.1 Differences between Costs of Climate Change Mitigation Evaluated Nationally and by Sector 62 9.2 Selected Specific Sectoral Findings on Costs of Climate Change Mitigation 63 9.2.1 Coal 63			Stabilization Targets	61
9 Sectoral Costs and Ancillary Benefits of Mitigation 62 9.1 Differences between Costs of Climate Change Mitigation Evaluated Nationally and by Sector 62 9.2 Selected Specific Sectoral Findings on Costs of Climate Change Mitigation 63 9.2.1 Coal 63		8.10	The Issue of Induced Technological Change	62
Mitigation629.1Differences between Costs of Climate Change Mitigation Evaluated Nationally and by Sector629.2Selected Specific Sectoral Findings on Costs of Climate Change Mitigation639.2.1Coal63	9	Secto	oral Costs and Ancillary Benefits of	
9.1 Differences between Costs of Climate Change Mitigation Evaluated Nationally 62 9.2 Selected Specific Sectoral Findings on Costs of Climate Change Mitigation 63 9.2.1 Coal		Mitig	ation	62
Change Mitigation Evaluated Nationally and by Sector629.2Selected Specific Sectoral Findings on Costs of Climate Change Mitigation639.2.1Coal63		9.1	Differences between Costs of Climate	
and by Sector 62 9.2 Selected Specific Sectoral Findings on Costs of Climate Change Mitigation 63 9.2.1 Coal 63			Change Mitigation Evaluated Nationally	
9.2 Selected Specific Sectoral Findings on Costs of Climate Change Mitigation 63 9.2.1 Coal 63			and by Sector	62
Costs of Climate Change Mitigation 63 9.2.1 Coal 63		9.2	Selected Specific Sectoral Findings on	
9.2.1 Coal 63			Costs of Climate Change Mitigation	63
			9.2.1 Coal	63
				00

		9.2.2	Oil		63
		9.2.3	Gas		65
		9.2.4	Electricity		65
		9.2.5	Transport		65
	9.3	Sector	al Ancillary Ben	efits of Greenhouse	
		Gas M	litigation		65
	9.4	The E	ffects of Mitigat	ion on Sectoral	
		Comp	etitiveness		65
	9.5	Why t	he Results of Stu	udies Differ	66
10	Decis	ion An	alytical Framev	vorks	66
10	Decis 10.1	sion An Scope	alytical Framev for and New De	v orks evelopments in	66
10	Decis 10.1	sion An Scope Analy	alytical Framev for and New De ses for Climate (v orks velopments in Change Decisions	66
10	Decis 10.1 10.2	sion An Scope Analy Interna	alytical Framev for and New De ses for Climate (ational Regimes	vorks velopments in Change Decisions and Policy Options	66 66 67
10	Decis 10.1 10.2 10.3	sion An Scope Analy Interna Linkag	alytical Framew for and New De ses for Climate (ational Regimes ges to National a	works evelopments in Change Decisions and Policy Options nd Local Sustainable	66 66 67
10	Decis 10.1 10.2 10.3	sion An Scope Analy Interna Linkag Develo	alytical Framev for and New De ses for Climate (ational Regimes ges to National a opment Choices	works evelopments in Change Decisions and Policy Options nd Local Sustainable	66 67 68
10	Decis 10.1 10.2 10.3 10.4	sion An Scope Analy Interna Linkag Develo Key P	alytical Framev for and New De ses for Climate (ational Regimes ges to National a opment Choices folicy-relevant So	vorks velopments in Change Decisions and Policy Options nd Local Sustainable cientific Questions	66 67 68 68

AR4 (2007): Mitigation of climate change

Sum	mary for Policymakers		1
Tech	nical Summary	25	
1	Introduction		95
2	Framing issues		117
3	Issues related to mitigation in the long te	erm context	169
4	Energy supply		251
5	Transport and its infrastructure		323
6	Residential and commercial buildings		387
7	Industry		447
8	Agriculture		497
9	Forestry		541
10	Waste management		585
11	Mitigation from a cross sectoral perspect	ive	619
12	Sustainable Development and mitigation	1	691
13	Policies, instruments and co-operative ag	reements	745

AR5 (2014): Mitigation of climate change

Summary for Policymakers				
Technical Sum	ımary	33		
Chapter 1	Introductory Chapter	111		
Chapter 2	Integrated Risk and Uncertainty Assessment of Climate Change Response Policies.	. 151		
Chapter 3	Social, Economic, and Ethical Concepts and Methods	. 207		
Chapter 4	Sustainable Development and Equity	. 283		
Chapter 5	Drivers, Trends and Mitigation	. 351		
Chapter 6	Assessing Transformation Pathways	. 413		
Chapter 7	Energy Systems	. 511		
Chapter 8	Transport	. 599		
Chapter 9	Buildings	. 671		
Chapter 10	Industry	. 739		
Chapter 11	Agriculture, Forestry and Other Land Use (AFOLU)	. 811		
Chapter 12	Human Settlements, Infrastructure, and Spatial Planning	. 923		
Chapter 13	International Cooperation: Agreements & Instruments	1001		
Chapter 14	Regional Development and Cooperation	1083		
Chapter 15	National and Sub-national Policies and Institutions	1141		
Chapter 16	Cross-cutting Investment and Finance Issues	1207		
Annov	Classon, Astonyms and Chamical Symbols	1240		
		1249		
Annex II	Metrics & Methodolgy	1281		
Annex III	Technology-specific Cost and Performance Parameters	1329		

AR5, ch7: Energy systems

7.1	Introduc	tion	8
7.2	Energy p	roduction, conversion, transmission and distribution51	9
7.3	New dev	elopments in emission trends and drivers52	22
7.4	Resource	es and resource availability	24
	7.4.1	Fossil fuels	24
	7.4.2	Renewable energy	25
	7.4.3	Nuclear energy	26
7.5	Mitigatio	on technology options, practices and behavioral aspects52	27
	7.5.1	Fossil fuel extraction, conversion, and fuel switching	27
	7.5.2	Energy efficiency in transmission and distribution	28
	7.5.3	Renewable energy technologies	28
	7.5.4	Nuclear energy	80
	7.5.5	Carbon dioxide capture and storage (CCS)	2
7.6	Infrastru	cture and systemic perspectives	4
	7.6.1 7.6.2 7.6.3	Electrical power systems537.6.1.1System balancing—flexible generation and loads537.6.1.2Capacity adequacy537.6.1.3Transmission and distribution53Heating and cooling networks53Fuel supply systems53	14 14 15 15
	7.6.4	CO ₂ transport	6

AR5, ch7: Energy systems

7.7	Climate	e change feedback and interaction with adaptation	537
7.8	Costs a	nd potentials	538
	7.8.1	Potential emission reduction from mitigation measures	538
	7.8.2	Cost assessment of mitigation measures	542
	7.8.3	Economic potentials of mitigation measures	543
7.9	Co-ben	efits, risks and spillovers	544
	7.9.1	Socio-economic effects	544
	7.9.2	Environmental and health effects	546
	7.9.3	Technical risks	549
	7.9.4	Public perception	551
7.10	Barriers	s and opportunities	551
	7.10.1	Technical aspects	551
	7.10.2	Financial and investment barriers and opportunities	552
	7.10.3	Cultural, institutional, and legal barriers and opportunities	552
	7.10.4	Human capital capacity building	553
	7.10.5	Inertia in energy systems physical capital stock turnover	553
7.11	Sectora	al implication of transformation pathways and sustainable development	554
	7.11.1	Energy-related greenhouse gas emissions.	554
	7.11.2	Energy supply in low-stabilization scenarios	555
	7.11.3	Role of the electricity sector in climate change mitigation	559
	7.11.4	Relationship between short-term action and long-term targets	562

AR5, ch7: Energy systems

7.12	Sectoral policies		564
	7.12.1	Economic instruments	565
	7.12.2	Regulatory approaches	567
	7.12.3	Information programmes	567
	7.12.4	Government provision of public goods or services	567
	7.12.5	Voluntary actions	568
7.13	Gaps in knowledge and data		. 568
7.14	Frequent	ly Asked Questions	568

Key messages from AR5 ch7 on energy systems (1/3)

- The energy supply se Energy is the main issue ouse gas emissions (robust evidence, high agreement).
- In the baseline scenarios assessed in AR5, direct CO2 emissions of the energy supply sector increase from 14.4 GtCO2 / yr in 2010 to 24 33 GtCO2 / yr in 2050 (25 75th percentile; full range 15 42 GtCO2 It is also the main solution.
- Multiple options exist to reduce energy supply sector GHG emissions (robust evidence, high agreement). These include energy efficiency improvements and fugitive emission reductions in fuel extraction as well as in energy conversion, transmission, and distribution systems; fossil fuel switching; and well as in energy conversion, transmission, and distribution systems; fossil fuel switching; and well as in energy conversion, transmission, and distribution systems; fossil fuel switching; and well as in energy conversion, transmission, and distribution systems; fossil fuel switching; and well as in energy conversion, transmission, and distribution systems; fossil fuel switching; and well as in energy conversion, transmission, and distribution systems; fossil fuel switching; and well as in energy conversion, transmission, and distribution systems; fossil fuel switching; and well as in energy conversion, transmission, and distribution systems; fossil fuel switching; and well as in energy conversion, transmission, and distribution systems; fossil fuel switching; and well as in energy conversion, transmission, and distribution systems; fossil fuel switching; and well as in energy conversion, transmission, and distribution systems; fossil fuel switching; and well as in energy conversion, transmission, and distribution systems; fossil fuel switching; and well as in energy conversion, transmission, and distribution systems; fossil fuel switching; and well as in energy conversion, transmission, and distribution systems; fossil fuel switching; and well as in energy conversion, transmission, and distribution systems; fossil fuel switching; and well as in energy conversion, transmission, and distribution systems; fossil fuel switching; and well as in energy conversion, transmission, and transmission, and distribution systems; fossil fuel switching; and well as in energy conversion, transmission, and distribution systems; fossil fuel switching; and well as in energy conversion, and transmission, and distribution s
- The stabilization of intensity of electricity a fundamental transformation of the energy supply system, including the long-term substitution of unabated fossil fuel conversion technological production is a key solution,
- Decarbonizing (i. e. reducing the carbon intensity of) electricity generation is a key component of cost-effective mit together with electrification (430 530 ppm CO2eq); in most intensity of intensity buildings and transport sectors (medium evidence, high agreement).

Key messages from AR5 ch7 on energy systems (2/3)

- Since the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), many RE technologies have demonstrated substantial performance improvements and cost reductions, and a growing number of RE technologies have achieved a level of maturity to enable deployment at significant scale (robust evidence, high agreement).
- There are of accidents compared by the solution of the solution... but come with some
- Infrastructure and inchaitenges, by RE technology and the characteristics of the existing background energy system (medium evidence, medium agreeding). Operating experience and studies of medium to high penetrations of RE indicate that these issues can be managed with various technical and institutional tools. As RE penetrations increase, such issues are more challenging, oust be Nuclear energy could also be partiof the supply, and may result in higher costs.
- Nuclear energy is a **Solution** is **but comes with Some** lobal electricity generation has been declining (since 1993). Nuclear energy could make an increasing contribution to low-carbon energy supply, but a variety of barriers and risks exchallenges.
- Barriers to and risks associated with an increasing use of nuclear energy include operational risks and the associated safety concerns, unium a Carbon capture and storage could become apon proliferation concerns, and the associated safety and the associated safety and the second become apon proliferation concerns, and the associated safety and the associated safety approximately and the associated safety approximately a
- Carbon dioxide capt **part of the Solution** the **but is still very** fuel power plants (medium evidence, medium agreement). While all components of integrated CCS systems exist and are in use today by the fossil fuel extraction and refining increases in the scale to a large, commercial fossil fuel power plant. A variety of pilot and demonstrations projects have been to critical advances in the knowledge of CCS systems and related engineering, technical, economic and policy issues.
- Barriers to large-scal Replacing coal with gas in power on a safety and long-term integrity of CO2 storage as well as transport risks (limited evidence, medium agreement).
 GHG emissions from energy supply can be reduced significantly by replacing current world average coal-fired power plants with
- GHG emissions from energy supply can be reduced significantly by replacing current world average coal-fired power plants with modern, highly efficient natural gas combined-cycle (NGCC) power plants or combined heat and power (CHP) plants, provided that natural gas is available and the fugitive emissions associated with its extraction and supply are low or mitigated (robust evidence, high agreement).

Key messages from AR5 ch7 on energy systems (3/3)

Some policies have been

- Greenhouse gas emission trading and GHC taxes have been enacted to address the market externalition plemented with some successes, have been enacted to address the market externalition plemented with some successes.
- The success of en More policies are neededing, the removal of financial barriers, the development of a solid legal framework, and sufficient regulatory stability (robust evidence, Governance and finance are key.
- The energy infrast Development needs should not be countries (LOC), agreement).
 The energy infrast Development needs should not be countries (LOC), be countries (LOC), agreement of the countries (LOC), be countries (LOC)

What is missing?

• How are the key words from the program of this week treated?

macroeconomy/ macroeconomic	materials	history of energy transitions	decentralization
stock-flow	grid stability		governance
finance	energy storage		commons
			inequalities

macroeconomy/ macroeconomic	1 occurrence of « macroeconomy » in the whole 1494 pages!/macroeconomic appears often [mainly « macroeconomic costs » or « macroeconomic context »]
stock-flow	0 occurrence [but a number of the models used are in fact stock-flow consistent],
finance	treated in short (3/4 page) section « 7.10.2 Financial and investment barriers and Opportunities » [but also a dedicated chapter 16]

materials	a short section in Chapter 7
grid stability	0 occurrence [but treated under section « 7.6.1.1 System balancing — flexible generation and loads », with 42 references cited]
energy storage	2 paragraphs

Materials

- Competition for land and other resources among different **RE sources** may impact aggregate technical potentials, as might concerns about the carbon footprint and sustainability of the resource (e. g., biomass) as well as materials demands (cf. Annex Bioenergy in Chapter 11; de Vries et al., 2007; Kleijn and van der Voet, 2010; Graedel, 2011).
- Wind, ocean, and CSP need more iron and cement than fossil fuel fired power plants, while photovoltaic power relies on a range of scarce materials (Burkhardt et al., 2011; Graedel, 2011; Kleijn et al., 2011; Arvesen and Hertwich, 2011). Furthermore, mining and material processing is associated with environmental impacts (Norgate et al., 2007), which make a substantial contribution to the total life-cycle impacts of renewable power systems. There has been a significant concern about the availability of critical metals and the environmental impacts associated with their production. Silver, tellurium, indium, and gallium have been identified as metals potentially constraining the choice of PV technology, but not presenting a fundamental obstacle to PV deployment (Graedel, 2011; Zuser and Rechberger, 2011; Fthenakis and Anctil, 2013; Ravikumar and Malghan, 2013). Silver is also a concern for CSP (Pihl et al., 2012). The limited availability of rare earth elements used to construct powerful permanent magnets, especially dysprosium and neodymium, may limit the application of efficient direct-drive wind turbines (Hoenderdaal et al., 2013). Recycling is necessary to ensure the long-term supply of critical metals and may also reduce environmental impacts compared to virgin materials (Anctil and Fthenakis, 2013; Binnemans et al., 2013). With improvements in the performance of renewable energy systems in recent years, their specific material demand and environmental impacts have also declined (Arvesen and Hertwich, 2011; Caduff et al., 2012).
- [15 references]

Energy storage

- Energy storage might play an increasing role in the field of system balancing (Zafirakis et al., 2013). Today pumped hydro storage is the only widely deployed storage technology (Kanakasabapathy, 2013). Other storage technologies including compressed air energy storage (CAES) and batteries may be deployed at greater scale within centralized power systems in the future (Pickard et al., 2009a; b; Roberts and Sandberg, 2011), and the latter can be decentralized. These short-term storage resources can be used to compensate the day-night cycle of solar and short-term fluctuation of wind power (Denholm and Sioshansi, 2009; Chen et al., 2009; Loisel et al., 2010; Beaudin et al., 2010). With the exception of pumped hydro storage, full (levelized) storage costs are still high, but storage costs are expected to decline with technology development (IEA, 2009b; Deane et al., 2010; Dunn et al., 2011; EIA, 2012). 'Power to heat' and 'power to gas' (H2 or methane) technologies might allow for translating surplus renewable electricity into other useful final energy forms (see Sections 7.6.2 and 7.6.3).
- The addition of significant plants with low capacity credit can lead to the need for a higher planning-reserve margin (defined as the ratio of the sum of the nameplate capacity of all generation to peak demand) to ensure the same degree of system reliability. If specifically tied to RE generation, energy storage can increase the capacity credit of that source; for example, the capacity credit of CSP with thermal storage is greater than without thermal storage (Madaeni et al., 2011).
- [13 references]

history of	0 occurrence [history twice, once about the history of EU-
energy transitions	ETS, once about the history of energy security concepts]

decentralization	10 times in chapter 7, but also in chapters « Human settlements, infrastructure and spatial planning » and « National and sub-national policies and institutions » (with limited treatment)
governance	5 occurrences in chapter 7, but many occurrences in chapters 12-13-14-15-16
commons	0 occurrences in chapter 7, but some occurrences in chapters 3, 4, 13 and 15 [but only in the phrase « global commons », nothing on local commons] - note: in SPM, « negociations » at General Assembly have relegated the commons concept to a simple footnote
inequalities	0 occurrences in chapter 7, but many in chapters 3 and 4 [but very few in the « policy » chapters]

Remark: also an issue that the treatment of commons and inequalities is separated (in chapters 3 and 4) from that of governance (in chapters 12 to 16).

What is missing?

- How are the key words from the program of this week treated?
- Gaps in knowledge identified in chapter 7

• The diversity of energy statistic and GHG emission accounting methodologies as well as several years delay in the availability of energy statistics data limit reliable descriptions of current and historic energy use and emission data.

• Although fundamental problems in identifying fossil fuel and nuclear resource deposits, the extent of potential carbon storage **Data (energy, emissions statistics)** ged, the development of unified and consistent reporting schemes, the collection of additional field data, and further geological modelling activities could reduce the currently ex **Uncertainties in carbon storage sites potential**

• There is a gap Uncertainties in fugitive CH4 emissions operational and supply chain risks of nuclear power pome risks associated with adverse side effects of some RE, especially biomass and hydropower, are often highly dependent on the selected technologies and the locational and regulatory context in which they are [nuclear/CCS/biomass/hydropower] hard to quantify esearch could, in part, reduce the associated knowledge gaps.

Integration of high-levels of renewable energy
 There is limited research on the integration issues associated with high levels of low-carbon technology
 utilization
 Impacts of climate change on renewable energy potentials

• Knowledge gaps pertain to the regional and local impacts of climate change on the technical potential for renewable energication of the climate change energy supply options

• The current literature provides a limited number of compensive studies on the economic environmental, social, and cultu **Co-benefits and trade-offs, effectiveness and cost-efficiency** a lack of consistent and **of energy policies** eys concerning the current cost of sourcing and using unconventional fossil fuels, RE, nuclear power, and the expected ones for CCS and BECCS. In addition, there is a lack of globally comprehensive **Interactions with other policies** poly and GHG related mitigation options.

• Integrated decision making requires further development of energy market models as well as integrated assessment modelling frameworks, accounting for the range of possible cobenefits and tradeoff between different policies in the energy sector that tackle energy access, energy security, and / or environmental concerns.

• Research on the effectiveness and cost-efficiency of climate related energy policies and especially concerning their interaction with other policies in the energy sector is limited.

What is missing?

- How are the key words from the program of this week treated?
- Gaps in knowledge identified in chapter 7
- Other Gaps:
 - Life-cycle assessment and material flow analysis?
 - Cross-sectoral issues, systemic issues?
 - Energy-growth-development nexus?
 - Social sciences relevant to energy-demand behaviors and policies?

Will AR6 be better?

The Sixth Assessment cycle

Chapter outline of the Working Group III contribution to the IPCC Sixth Assessment Report (AR6)

1. Introduction and Framing	10. Transport	
2. Emissions trends and drivers	11. Industry	
3. Mitigation pathways compatible with long-term	12. Cross sectoral perspectives	
goals 4. Mitigation and development pathways in the	13. National and sub-national policies and institutions	
near- to mid-term	14. International cooperation	
5. Demand, services and social aspects of mitigation	15. Investment and finance	
6. Energy systems	16. Innovation. technology development and	
7. Agriculture, Forestry, and Other Land Uses	transfer	
(AFOLU)	17. Accelerating the transition in the context of	
8. Urban systems and other settlements	sustainable development	
9. Buildings		

Chapter 6: Energy systems

- Energy services, energy systems and energy sector, integrations with other systems (including food supply system, buildings, transportation, industrial systems)
- Energy resources (fossil and non-fossil) and their regional distribution
- Global and regional new trends and drivers
- Policies and measures and other regulatory frameworks; and supply and demand systems
- Fugitive emissions and non-CO2 emissions
- Global and regional new trends for electricity and low carbon energy supply systems, including deployment and cost aspects.
- Smart energy systems, decentralized systems and the integration of the supply and demand
- Energy efficiency technologies and measures
- Mitigation options (including CCS), practices and behavioral aspects (including public perception and social acceptance)
- Interconnection, storage, infrastructure and lock-in
- The role of energy systems in long-term mitigation pathways
- Bridging long-term targets with short and mid-term policies
- Sectoral policies and goals (including feed-in tariffs, renewables obligations and others)
- Mainstreaming climate into energy policy

Chapter outline of the Working Group III contribution to the IPCC Sixth Assessment Report (AR6)

- 1. Introduction and Framing **10. Transport** Systemic interactions (e.g. energy sector, urban) and insights from life cycle assessment and material flow analysis 2. Emissions trends and drivers ٠ 3. Mitigation pathways compatible with long-term goals 11. Industry 4. Mitigation and development pathways in the near- to mid-term **12.** Cross sectoral perspectives 5. Demand, services and social aspects of mitigation 13. National and sub-national policies and institutions Sharing economy, collaborative consumption, community energy 14. International cooperation 15. Investment and finance 6. Energy systems
- 7. Agriculture, Forestry, and Other Land Uses (AFOLU)
- Provision of food, feed, fibre, wood, biomass for energy, and other ecosystem services and resources from land, including interactions in the context of mitigation strategies and pathways

8. Urban systems and other settlements

9. Buildings

Access to sector specific services (e.g. affordability, energy poverty)

16. Innovation, technology development and transfer

17. Accelerating the transition in the context of sustainable development

Concluding remarks: Some remaining gaps?

- Beyond FAQ for communication?
 - FAQ 7.1 How much does the energy supply sector contribute to the GHG emissions?
 - FAQ 7.2 What are the main mitigation options in the energy supply sector?
 - FAQ 7.3 What barriers need to be overcome in the energy supply sector to enable a transformation to low-GHG emissions?
- Limits of SPM for communication (all the more as some elements do not make it to the SPM eg. regional disagregation of emissions trends, policy evaluations)?

Thank you for your attention! ... and your questions?

The energy of IPCC...or the IPCC of energy

Celine Guivarch

guivarch@centre-cired.fr

Science and Energy, 2018

Ecole de Physique des Houches

5 march 2018

École des Ponts ParisTech

CENTRE INTERNATIONAL DE RECHERCHE SUR L'ENVIRONNEMENT ET LE DÉVELOPPEMENT